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Fast Waveguide Mode Computation Using
Wavelet-Like Basis Functions
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Abstract— The use of wavelet-like basis functions for solving
electromagnetics problems is demonstrated. In particular, the
modes of an arbitrarily shaped hollow metallic waveguide using
a surface integral equation/method of moments (MOM) formu-
lation are found. A class of wavelet-like basis functions is used
to produce a sparse MOM impedance matrix, allowing the use
of sparse matrix methods for fast solution of the problem. The
same method applies directly to the external scattering problem.
For the examples considered, the wavelet domain impedance
matrix has about 20% nonzero elements, and the time required
to compute its LU factorization is reduced by approximately a
factor of 10 compared to the original full matrix.

1. INTRODUCTION

ECENTLY, there has been a great deal of interest in

using wavelets or wavelet-like basis functions to speed
the solution of integral equations arising in electromagnetics
[11-[3]. Here, we show that use of the wavelet-like basis
functions of Alpert er al. [4] accelerates the solution of
surface integral equation/method of moments problems. This
is illustrated by solving for the modes of an arbitrarily shaped
hollow metallic waveguide. This problem results in a nonlinear
eigenequation, the solution of which requires many evaluations
of the determinant of an MOM impedance matrix [5]. If
pulse basis functions are used to expand the current on the
waveguide wall, the resulting MOM matrix Z will be full. This
is because pulse basis currents radiate well, and hence they
all interact with one another. However, the impedance matrix
is sparse when represented in the wavelet-like basis of [4].
This is because many of the wavelet-like basis functions are
poor radiators and hence do not interact with one another. The
determinant of the new sparse impedance matrix Z’ may be
computed rapidly using sparse matrix methods. This technique
may also be applied directly to solving the exterior scattering
problem, since the same impedance matrix is used.

II. THEORY

The TM modes of a hollow cylindrical waveguide with
boundary contour C' are characterized by the field component
L, satisfying the boundary condition E, = 0 on C. Enforcing
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Fig. 1. Determinant of MOM impedance matrix Z for (a) a rectangular

waveguide, sides 9m by 4m, modeled with NV = 52 pulse basis functions and
(b) a circular waveguide, radius 1 m, modeled with N = 50 pulses. True
eigenvalues are marked with a x.

this boundary condition yields the integral eigenequation

]{Cdl 9o(rs, s ks)J.(rs) =0, r,eC. 1
In (1), J, is the current on the waveguide wall, go
is the two-dimensional Green’s function [go(rs,7);ks) =
(¢ /4)H(§1)(ks [rs —r7,|)], and the eigenvalues &, are the cutoff
wavenumbers of the TM modes. The s subscript denotes
transverse-to-z coordinates.

Expanding the surface current J,(r;),rs € C, in rectangular
pulse basis functions and point matching the resulting equation
at the centers of the pulses gives the MOM matrix formulation
Z(ks) -a = 0, where a is a vector containing expansion
coefficients for the surface current and Z(k,) is an impedance
matrix with elements which may be approximated numerically
by a symmetric matrix

A3[1+i§1n(i’;%—z)], i=j
DOGH (klrs ~ 1), i # 3,

where /\; and r; are the width and center position of the ith
pulse, and v = 0.5772 is Euler’s constant. The eigenvalues
ks are then determined from the nonlinear eigenequation
det[Z(k,)] = 0. This equation may be solved using a nonlinear
root finding algorithm, requiring many evaluations of the left
hand side. Examples are shown in Fig. 1. Since Z is generally
a full matrix, computing its determinant by LU factorization
is expensive, with a computational cost of O(N3), where N
is the dimension of Z.

To expedite the computation, we make use of the wavelet-
like basis functions introduced by Alpert et al. {4]. These bases
are designed specifically to produce sparse representations

Zij(ks) = { 2
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Fig. 2. (a) Magnitude of basis vector matrix U, with N = 128 discretization
points and k = 8 vanishing moments. Each row is one basis vector. (b) Sample
basis vectors: rows 4, 68, 100, and 116 of U.

of integral operators having smooth, nonoscillatory (Laplace-
like) kernels. However, their use also produces significant
sparseness in the representation of the integral operator of (1),
with a Hankel function kernel.

These orthonormal basis vectors have two principal proper-
ties. First, they have support on different length scales in space.
Second, all but £ basis vectors have & vanishing moments,
where & is an integer chosen by the user. That is, most of
the basis vectors are orthogonal to polynomials of degree
< k, and hence have high spatial frequency content. Fig. 2
shows the basis vectors for N = 128 discretization points
and k£ = 8 vanishing moments. A detailed description of their
construction is given in [4].

Because many of the new basis vectors have high spatial
frequency content, they are poor radiators/receivers and hence
do not interact with one another. This accounts for the sparse-
ness of the new impedance matrix Z'. If U is a matrix with the
new basis vectors as its rows, then Z is represented in the new
basis by the similarity transformation Z’ = UZU” . Because
of the special structure of U, the similarity transformation
above can be shown to have a computational cost of O(N?).
The new matrix Z’ is thresholded by zeroing elements Z/;
with magnitude less than a cutoff 7. Following [4], 7 is
chosen to be 7 = €||Z)|/N, where € is a constant, N is
the dimension of Z, and ||Z]|o is the infinity or row-sum
norm of Z, [|Z]|e = max; Y1, |Z;].

III. RESULTS

In the cases we have examined, the transformed and thresh-
olded operator Z’ is a sparse matrix with a/N? nonzero
elements, where typically o = 0.2. Fig. 3 shows the sparsity
structure of Z’ for a rectangular and circular waveguide. In
this example and in the following results we have used the
parameters £ = 8 vanishing moments and ¢ = 1072 for
thresholding. These seem to provide near optimal sparsity
without sacrificing the accuracy of the solution (the maximum
error in the calculated determinant is ~ 0.5%).

Using a sparse matrix package, det [Z/(ks)] can be com-
puted by LU factorization in much less time than is required
for the full, pulse basis matrix Z. Fig. 4 summarizes the
computer time required for the case of a circular cylinder
modeled by N basis functions. Similar results have been
observed for a rectangular waveguide with aspect ratio 9/4,
and for both the circular: and rectangular waveguides with
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Fig. 3 Sparsity structure of new MOM matrix Z’ for (a) a rectangular
waveguide, aspect ratio = 9/4, and (b) a circular waveguide. Both are
originally modeled with N = 512 pulse basis functions of width A = A/10.
The matrices are (a) 22.6% and (b) 18.8% full.
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Fig. 4. Timing data for the circular waveguide, A/10 discretization: factor
full matrix Z (+), similarity transform Z' = vzut (o), factor sparse
matrix Z' (x).

TE (H,) polarization. In each case the discretization is such
that A; ~ 0.1A. The CPU time is given for a SPARC
2 workstation, using double precision. The sparse matrix
package used is Sparsel.3 [6]. Notice the factor of 10 speed
increase in the factorization step. The additional overhead
of the similarity transformation 7’ = UZUT has a lower
computational complexity than the factorization step, and so
its cost will become insignificant as N becomes very large.

Iv. CONCLUSION

We have demonstrated the use of the wavelet-like basis
functions of [4] to reduce the MOM impedance matrix Z
for a hollow metallic waveguide from N 2 nonzero elements
in the pulse basis to «/N? nonzero elements in the wavelet-
like basis, where « = 0.2 for the examples considered. This
result also applies directly to the external scattering problem.
The new sparse matrix can be factored and its. determinant
computed much more rapidly than the original full matrix. For
the example above, the speedup factor is about 10. Possibilities
for the future include using wavelet-like bases to rapidly solve
for scattering from three-dimensional surfaces or from volume
scatterers. In addition, as indicated in [4], it may be possible
to construct modified basis functions that will produce even
more sparsity in the impedance matrix, further increasing the
solution efficiency.
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