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Abstract— The use of wavelet-like basis functions for solving

electromagnetic problems is demonstrated. In particular, the

modes of an arbitrarily shaped hollow metdic waveguide using

a surface integral equation/method of moments (MOM) formu-

lation are found. A class of wavelet-like basis functions is used

to produce a sparse MOM impedance matrix, allowing the use
of sparse matrix methods for fast solution of the problem. The
same method applies directly to the external scattering problem.
For the examples considered, the wavelet domain impedance

matrix has about 20% nonzero elements, and the time required
to compute its LU factorization is reduced by approximately a

factor of 10 compared to the original full matrix.

I. INTRODUCTION

R ECENTLY, there has been a great deal of interest in

using wavelets or wavelet-like basis functions to speed

the solution of integraJ equations arising in electromagnetic

[1]–[3]. Here, we show that use of the wavelet-like basis

functions of Alpert et al. [4] accelerates the solution of

surface integral equation/method of moments problems. This

is illustrated by solving for the modes of an arbitrarily shaped

hollow metallic waveguide. This problem results in a nonlinear

eigenequation, the solution of which requires many evaluations

of the determinant of an MOM impedance matrix [5]. If

pulse basis functions are used to expand the current on the

waveguide wall, the resulting MOM matrix Z will be full. This

is because pulse basis currents radiate well, and hence they

all interact with one another. However, the impedance matrix

is sparse when represented in the wavelet-like basis of [4].

This is because many of the wavelet-like basis functions are

poor radiators and hence do not interact with one another. The

determinant of the new sparse impedance matrix Z’ may be

computed rapidly using sparse matrix methods. This technique

may also be applied directly to solving the exterior scattering

problem, since the same impedance matrix is used,

II. THEORY

The TM modes of a hollow cylindrical waveguide with

boundary contour C are characterized by the field component

Ez satisfying the boundary condition Ez = O on C. Enforcing
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Fig. 1. Determinant of MOM impedance matrix Z for (a) a rectangular

wavegnide, sides 9m by 4m, modeled with N = 52 pulse basis functions aad

(b) a circular waveguide, radius 1 m, modeled with N = 50 pulses. True

eigenvalues are marked with a x.

this boundary condition yields the integral eigenequation

~
dl go(rs, r-:; k.) Jz(r,) = 0, r; E c. (1)

c

In (l), J= is the current on the waveguide wall, go
k)=is the two-dimensional Green’s function [go (r~, ‘r:; ~

(i/4) H~1)(k.lr, - r~l)], and the eigenvalues ,& are the cutoff

wavenumbers of the TM modes. The s subscript denotes

transverse-to-z coordinates.

Expanding the surface current Y3(r-,), rs e C, in rectangular

pulse basis functions and point matching the resulting equation

at the centers of the pulses gives the MOM matrix formulation

Z(k$) . a = O, where a is a vector containing expansion

coefficients for the surface current and Z(ks ) is an impedance

matrix with elements which may be approximated numerically

by a symmetric matrix

where & and r~ are the width and center position of the ith
pulse, and T = 0.5772 is Euler’s constant. The eigenvalues

ks are then determined from the nonlinear eigenequation

det [Z(k.)] = O.This equation maybe solved using a nonlinear

root finding algorithm, requiring many evaluations of the left

hand side. Examples are shown in Fig. 1. Since Z is generally

a full matrix, computing its determinant by LU factorization

is expensive, with a computational cost of 0[IV3), where N

is the dimension of Z.

To expedite the computation, we make use of the wavelet-

Iike basis functions introduced by Alpert et al. [4]. These bases

are designed specifically to produce sparse representations
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Fig. 2. (a) Magnitude of basis vector matrix U, with N = 128 discretization

points and k = 8 vanishing moments. Each row is one basis vector. (b) Sample
basis vectors: rows 4, 68, 100, and 116 of U.

of integral operators having smooth, nonoscillatory (Laplace-

like) kernels. However, their use also produces significant

sparseness in the representation of the integral operator of (l),

with a Hankel function kernel.

These orthonorrnal basis vectors have two principal proper-

ties. First, they have support on different length scales in space.

Second, all but k basis vectors have k vanishing moments,

where k is an integer chosen by the user. That is, most of

the basis vectors are orthogonal to polynomials of degree

< k, and hence have high spatial frequency content. Fig. 2

shows the basis vectors for N = 128 discretization points

and k = 8 vanishing moments. A detailed description of their

construction is given in [4].

Because many of the new basis vectors have high spatial

frequency content, they are poor radiators/receivers and hence

do not interact with one another. This accounts for the sparse-

ness of the new impedance matrix Z’. If U is a matrix with the

new basis vectors as its rows, then Z is represented in the new

basis by the similarity transformation Z’ = iYZUT. Because

of the special structure of U, the similarity transformation

above can be shown to have a computational cost of 0(N2).

The new matrix Z’ is thresholded by zeroing elements Z~j

with magnitude less than a cutoff ~. Following [4], T is

chosen to be ~ = cllZllN/N, where &

the dimension of Z, and llZllm is the

norm of Z, [lZ\lm = maxix~=l I-%jl.

111, RESULTS

is a constant, N is

infinity or row-sum

In the cases we have examined, the transformed and thresh-

olded operator Z’ is a ,sparse matrix with aN2 nonzero

elements, where typically a % 0.2. Fig. 3 shows the sparsity

structure of Z’ for a rectangular and circular waveguide. In

this example and in the following results we have used the

parameters k = 8 vanishing moments and e = 10-2 for

thresholding. These seem to provide near optimal sparsity

without sacrificing the accuracy of the solution (the maximum

error in the calculated determinant is x 0.570).

Using a sparse matrix package, det [Z’ (k.)] can be com-

puted by LU factorization in much less time than is required

for the full, pulse basis matrix Z. Fig. 4 summarizes the

computer time required for the case of a circular cylinder

modeled by N basis functions. Similar results have been

observed for a rectangular waveguide with aspect ratio 9/4,

and for both the circular and rectangular waveguides with

Fig. 3 Sparsity structure of new MOM matrix Z’ for (a) a rectangukm
waveguide, aspect ratio = 9/4, and (b) a circular waveguide. Both are

ongirmtly modeled with N = 512 pulse basis functions of width A x A/10.
The matrices are (a) 22.6% and (b) 18.8% full.
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Fig. 4. Timing data for the circular waveguide, A/10 discretization: factor

full matrix Z (+), similarity transform Z’ = UZUT (o), factor sparse

matrix Z’ (x).

TE (HZ) polarization. In each case the discretization is such

that A; x O.lA The CPU time is given for a SPAIRC

2 workstation, using double precision. The sparse matrix

package used is Sparsel.3 [6]. Notice the factor of 10 speed

increase in the factorization step. The additional overhead

of the similarity transformation Z’ = UZUT has a lower

computational complexity than the factorization step, and so

its cost will become insignificant as N becomes very large.

IV. CONCLUSION

We have demonstrated the use of the wavelet-like basis

functions of [4] to reduce the MOM impedance matrix Z

for a hollow metallic waveguide from N2 nonzero elements

in the pulse basis to aN2 nonzero elements in the wavelet-

like basis, where a x 0.2 for the examples considered. Tlhis

result also applies directly to the external scattering problem.

The new sparse matrix can be factored and its determinant

computed much more rapidly than the original full matrix. For

the example above, the speedup factor is about 10. Possibilities

for the future include using wavelet-like bases to rapidly solve

for scattering from three-dimensional surfaces or from volume

scatterers. In addition, as indicated in [4], it may be possible

to construct modified basis functions that will produce even

more sparsity in the impedance matrix, further increasing the

solution efficiency.
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